1 Induction

1.1 Concepts

1. Mathematical induction allows us to prove a statement for all n. Each induction problem will be of the form: "Let S_{n} be the statement that (something) is true for any integers $n \geq 1$ " where (something) is some mathematical equality. To solve them, there are three steps:
2. Base Case: Show that the statement is true for the smallest value $n=1$.
3. Inductive Step: State that you are assuming the inductive hypothesis (S_{n} is true for some $n \geq 1$). Then, prove that S_{n+1} is true using S_{n}.
4. Conclusion: State that by MMI, we conclude that S_{n} is true for all $n \geq 1$.

All steps must be written in order to get full credit.

1.2 Examples

2. Prove that $1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \geq 1$.
3. Prove that $5^{2 n+1}+2^{2 n+1}$ is divisible by 7 for all $n \geq 0$.

1.3 Problems

4. True False If we want to prove S_{n} for all $n \geq 10$, then our base case would be $n=10$.
5. True False When using induction, if we can show that if S_{100} is true, then S_{101} is true, then S_{n} must be true for all n.
6. True False Instead of assuming S_{n} is true and showing that S_{n+1} is true, we can instead assume that S_{n-1} is true and prove that S_{n} is true.
7. Prove that for all $n \geq 1$

$$
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1} .
$$

8. Prove that for all $n \geq 1$

$$
1+4+7+\cdots+(3 n-2)=\frac{n(3 n-1)}{2}
$$

9. Prove that

$$
1+3+9+\cdots+3^{n}=\frac{3^{n+1}-1}{2}
$$

for all $n \geq 1$.
10. Prove that $6^{n}-1$ is divisible by 5 for all $n \geq 1$.
11. Prove that $n^{3}+2 n$ is divisible by 3 for all integers $n \geq 0$.
12. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence defined as $a_{1}=1$ and $a_{n+1}=\sqrt{a_{n}+2}$. Prove that $a_{n} \leq 2$ for all $n \geq 1$.
13. Prove that $1!\cdot 1+2!\cdot 2+3!\cdot 3+\cdots+n!\cdot n=(n+1)$! -1 . for all $n \geq 1$.
14. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence defined as $a_{1}=1, a_{2}=5$ and $a_{n+2}=5 a_{n+1}-6 a_{n}$. Prove that $a_{n}=3^{n}-2^{n}$ for all $n \geq 1$.

